Comparison of identified mitral and tufted cells in freely breathing rats: II. Odor-evoked responses.
نویسندگان
چکیده
Mitral and tufted cells are the 2 types of output neurons of the main olfactory bulb. They are located in distinct layers, have distinct projection patterns of their dendrites and axons, and likely have distinct relationships with the intrabulbar inhibitory circuits. They could thus be functionally distinct and process different aspects of olfactory information. To examine this possibility, we compared the odor-evoked responses of identified single units recorded in the mitral cell layer (MCL units), in the core of the external plexiform layer (not at the glomerular border tufted cells), or at the glomerular border of this layer (GB tufted cells) of the entire olfactory bulb. Differences between mitral and tufted cells were observed only when subtle aspects of the responses were explored, such as the firing rate per respiratory cycle or the distribution of firing activity along the respiratory cycle. By contrast, more clear differences were found when the 2 subtypes of tufted cells were examined separately. GB units were significantly more responsive, had significantly higher firing activity, and showed greater activity at the transition between inspiration and expiration. The projection-type tufted cells situated closer to the entrance of the olfactory bulb may thus form a distinct physiological class of output neurons and differ from mitral cells and other tufted cells in the manner of processing olfactory information.
منابع مشابه
Comparison of identified mitral and tufted cells in freely breathing rats: I. Conduction velocity and spontaneous activity.
The spontaneous activity and impulse conduction velocities of mitral and tufted cells were compared in the entire main olfactory bulb of freely breathing, anesthetized rats. Single units in the mitral cell body layer (MCL) and external plexiform layer (EPL) were identified by antidromic activation from the lateral olfactory tract (LOT), electrode track reconstructions based on dye marking, and ...
متن کاملComparison of odor receptive field plasticity in the rat olfactory bulb and anterior piriform cortex.
Recent work in the anterior piriform cortex (aPCX) has demonstrated that cortical odor receptive fields are highly dynamic, showing rapid changes of both firing rate and temporal patterning within relatively few inhalations of an odor, despite relatively maintained, patterned input from olfactory bulb mitral/tufted cells. The present experiment examined the precision (odor-specificity) of this ...
متن کاملOlfactory bulb output cell temporal response patterns to increasing odor concentrations in freely breathing rats.
This study compares the single-unit responses of 74 mitral/tufted cells recorded in freely breathing rats to step increases of the intensity of five odorants from 2 x 10(-4) to 10(-1) of saturated vapor pressure. It reveals a stability of the responses of these olfactory bulb output cells. Olfactory stimulation has frequently been shown to produce a strong patterning of mitral/tufted cell disch...
متن کاملHigh-frequency oscillations are not necessary for simple olfactory discriminations in young rats.
Individual olfactory bulb mitral/tufted cells respond preferentially to groups of molecularly similar odorants. Bulbar interneurons such as periglomerular and granule cells are thought to influence mitral/tufted odorant receptive fields through mechanisms such as lateral inhibition. The mitralgranule cell circuit is also important in the generation of the odor-evoked fast oscillations seen in t...
متن کاملIn vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb.
One of the first steps in the coding of olfactory information is the transformation of synaptic input to action potential firing in mitral and tufted (M/T) cells of the mammalian olfactory bulb. However, little is known regarding the synaptic mechanisms underlying this process in vivo. In this study, we examined odor-evoked response patterns of M/T and granule cells using whole-cell recording i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical senses
دوره 33 9 شماره
صفحات -
تاریخ انتشار 2008